Note on integer-valued bilinear time series models
نویسندگان
چکیده
منابع مشابه
ON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملBilinear Garch Time Series Models
In this paper the class of BL-GARCH (Bilinear General AutoregRessive Conditional Heteroskedasticity) models is introduced. The proposed model is a modification to the BL-GARCH model proposed by Storti and Vitale (2003). Stationary conditions and autocorrelation structure for special cases of these new models are derived. Maximum likelihood estimation of the model is also considered. Some simula...
متن کاملOn the Theory of Bilinear Time Series Models
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملon the stationary probability density function of bilinear time series models: a numerical approach
in this paper, we show that the chapman-kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a markov bilinear model. the stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کاملThe Combined Poisson Inma(2) Models for Integer-valued Time Series
In this paper, we introduce a new combined integer-valued moving average model of order 2 with poisson innovation, denoted by PCINMA(2). We consider some properties of this process, such as expectation, variance, autocovariance function. Stationary and ergodicity are obtained. We estimate the unknown parameters by using Yule-Walker estimation, and use simulation to assess the performance of Yul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2008
ISSN: 0167-7152
DOI: 10.1016/j.spl.2007.10.008